
Transformation of Boolean Expression into

Disjunctive or Conjunctive Normal Form

Patrik Rusnak

Abstract—Reliability is an important characteristic of many systems. One of the current issues of reliability

analysis is investigation of systems that are composed of many components. Structure of such systems can be

defined in the form of a Boolean function. A Boolean function can be expressed in several ways. One of them is

a symbolic expression. Several types of symbolic representations of Boolean functions exist. The most

commonly known are disjunctive and conjunctive normal forms. These forms are often used not only in

reliability analysis but also in other fields, such as game theory or logic design. Therefore, it is very important to

have software that is able to transform any kind of Boolean expression into one of these normal forms. In this

paper, an algorithm that allows such transformation is presented.

Keywords—reliability, Boolean function, normal forms.

I. INTRODUCTION

Investigation of system reliability is a complex problem consisting of many steps. One of

them is creation of a model of the system. Since the system is usually composed of several

components, a special map defining the dependency between operation of the components and

operation of the system has to be known. This map is known as structure function and, for a

system consisting of 𝑛 components, it has the following form [1]:

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙): {0,1}𝑛 → {0,1}, (1)

where set {0,1} is a set of possible states at which the components and the system can operate

(state 1 means that the component/system is functioning while state 0 agrees with a failure of

the component/system), 𝑥𝑖 is a variable defining state of the 𝑖-th system component, for 𝑖 =
1,2, … , 𝑛, and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of components states (state vector).

Based on the properties of the structure function, two classes of systems can be recognized

– coherent and noncoherent. A system is coherent if its structure function is monotonic, i.e.

there are no circumstances under which a failure of any system component can result in a

repair of the system. If this condition is not met, the system is noncoherent.

Most of the systems studied by reliability engineers are coherent and, therefore, a lot of

methods of reliability analysis are based on the assumption that the structure function is

monotonic. Typical examples are methods of importance analysis [2], which focuses on

ranking the components with respect to their influence on the system operation. However, real

noncoherent systems also exist. Some of them are 𝑘-to-𝑙-out-of-𝑛 systems that are working if

at least 𝑘 but not more than 𝑙 components are working [3, 4] or logic circuits [5]. Reliability

analysis, especially importance analysis, of such systems requires development of new

methods that will take the incoherencies into account. One of the possible ways is to use tools

related to the analysis of Boolean function. One of such tools is logical differential calculus.

Logical differential calculus allows investigating dynamic properties of Boolean functions

[6]. Boolean derivative is the central term of this tool. Several types of Boolean derivatives

exist but, for the purpose of reliability analysis, the most important one is Direct Partial

Boolean Derivative (DPBD) [7]. For a Boolean function 𝜙(𝒙), it is defined as follows [6, 7]:

P. Rusnak, University of Zilina, Faculty of Management Science and Informatics, Zilina, Slovakia ().

Central European Researchers Journal, Vol.3 Issue 1

CERES ©2017 43

𝜕𝜙(𝑗 → 𝑗)̅ 𝜕𝑥𝑖(𝑠 → 𝑠̅)⁄ = {

1, if 𝜙(𝑠𝑖 , 𝒙) = 𝑗 AND 𝜙(𝑠̅𝑖 , 𝒙) = 𝑗̅
0, otherwise

,

for 𝑠, 𝑗 ∈ {0,1},
 (2)

where (𝑠𝑖 , 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑠, 𝑥𝑖+1, … , 𝑥𝑛). In reliability analysis, this derivative can be

used to find situations in which a failure/repair of a given system component results in the

failure/repair of the system. Quantification of such situations can be performed to rank

importance of the system components [7].

Definition (2) implies four different DPBDs with respect to variable 𝑥𝑖 exist. For coherent

systems, only DPBDs 𝜕𝜙(1 → 0) 𝜕𝑥𝑖(1 → 0)⁄ and 𝜕𝜙(0 → 1) 𝜕𝑥𝑖(0 → 1)⁄ are relevant

since there exist no situation in which a failure (repair) of a component can result in system

repair (failure). However, this is not true for noncoherent systems and, therefore, DPBDs

𝜕𝜙(1 → 0) 𝜕𝑥𝑖(0 → 1)⁄ and 𝜕𝜙(0 → 1) 𝜕𝑥𝑖(1 → 0)⁄ have to be taken into account too [8].

DPBDs can be computed numerically (if the analyzed function is defined by the truth table)

or symbolically (if the function is defined by a symbolic expression). Numerical calculation

can be implemented using the computer easily. However, it can be applied only to functions

of few variables since defining a big Boolean function using the truth table requires a huge

amount of memory. This problem can be solved using the symbolic representation. This

solution requires creation of complex software that is able to manipulate with different forms

of symbolic expressions. Development of such tool has been considered in [9].

The software described in [9] will implement methods needed for reliability analysis. The

methods should be based primarily on symbolic manipulation with Boolean (and also with

multiple-valued logic) functions. The principal part of the software is a parser that is able to

transform a symbolic expression into the form of a multi way tree that can be processed on the

computer much more easily than the original string representing the symbolic expression.

Normal forms [10] are one of the most commonly used Boolean expressions. In order to work

with them, the software has to be able to transform various kinds of Boolean expressions into

a specific normal form. In this paper, an algorithm for such transformation is presented. The

algorithm assumes that a Boolean expression is represented in the form of a multi way tree.

After applying the algorithm, we obtain a new tree that will agree with one of the normal

forms that are used in Boolean algebra.

II. BOOLEAN NORMAL FORMS

Boolean function can be represented in many forms, and one of them is a symbolic form. A

Boolean function can be expressed in a number of symbolic forms, some of which have a

specially defined format and are called normal forms [10]. One of the normal forms is a

disjunctive normal form or a sum of products. This form consists of elementary

conjunctions. An elementary conjunction of 𝑛 Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 has the

following form [11]:

𝑃 = ⋀ 𝑥𝑖

𝑖∈𝔸

∧ ⋀ 𝑥̅𝑗

𝑗∈𝔹

, where 𝔸 ∪ 𝔹 ⊆ {1,2, … , 𝑛} and 𝔸 ∩ 𝔹 = ∅.

Examples of elementary conjunctions are expressions such as 1, 𝑥̅1, 𝑥2, 𝑥1 ∧ 𝑥̅2, 𝑥̅1 ∧ 𝑥2 ∧ 𝑥3.

 Logical expression 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) that has the following form [11]:

𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = ⋁ 𝑃𝑘

𝑙

𝑘=1

= ⋁ (⋀ 𝑥𝑖

𝑖∈𝔸𝑘

∧ ⋀ 𝑥̅𝑗

𝑗∈𝔹𝑘

)

𝑙

𝑘=1

,

(3)

(4)

Central European Researchers Journal, Vol.3 Issue 1

44 CERES ©2017

is then known as Disjunctive Normal Form (DNF) composed of 𝑙 elementary conjunctions

denoted as 𝑃𝑘 for 𝑘 = 1,2, … , 𝑙. Examples of logical expressions in DNF are expressions such

as 𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∨ 𝑥2 ∧ 𝑥̅3, 𝜙(𝑥1, 𝑥2) = 𝑥̅1 ∧ 𝑥2 ∨ 𝑥1 ∧ 𝑥̅2, 𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∧ 𝑥2 ∨
𝑥̅1 ∧ 𝑥̅2 ∨ 𝑥1 ∧ 𝑥2 ∧ 𝑥̅3.

 Another commonly used form is a conjunctive normal form also called product of sums.

This form consists of elementary disjunctions (they are known as clauses). For 𝑛 Boolean

variables 𝑥1, 𝑥2, … , 𝑥𝑛, an elementary disjunction is defined as follows [11]:

𝑆 = ⋁ 𝑥𝑖

𝑖∈𝔸

∧ ⋁ 𝑥̅𝑗

𝑗∈𝔹

, where 𝔸 ∪ 𝔹 ⊆ {1,2, … , 𝑛} and 𝔸 ∩ 𝔹 = ∅.

Examples of elementary disjunctions are expressions such as 0, 𝑥̅1, 𝑥2, 𝑥1 ∨ 𝑥̅2, 𝑥̅1 ∨ 𝑥2 ∨

𝑥̅3.

Logical expression 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) that has the following form [11]:

𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = ⋀ 𝑆𝑘

𝑙

𝑘=1

= ⋀ (⋁ 𝑥𝑖

𝑖∈𝔸

∧ ⋁ 𝑥̅𝑗

𝑗∈𝔹

)

𝑙

𝑘=1

,

is Conjunctive Normal Form (CNF), where 𝑆𝑘 is the 𝑘-th elementary disjunction for 𝑘 =
1,2, … , 𝑙. Examples of logical expressions in CNF are expressions such as 𝜙(𝑥1, 𝑥2, 𝑥3) =
 (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥̅3), 𝜙(𝑥1, 𝑥2) = (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥̅2), 𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∨ 𝑥̅2 ∨ 𝑥3.

 These normal forms find their usage in a number of fields, such as game theory, artificial

intelligence, logic programming, logic design, and reliability analysis. For example, a special

DNF, called the Horn clause (condition), is used in proposition logic and logic programming

[11], DNF and CNF are used in the area of logic circuits to layout the logic gates from the

logic function of circuit [12], or DNF is used in the reliability analysis, specifically in

symbolic fault-tree analysis [13].

III. TRANSFORMATION TO NORMAL FORMS

The previous text indicates that normal forms are important in a number of fields.

Therefore, it is necessary for the software tool introduced in [9] to transform the expressions

of Boolean functions into these basic forms.

Before the transformation of the stored Boolean function into DNF or CNF is performed, it

is firstly necessary to ensure that Bool's negation operation (NOT) is only in front of variables

or constants. For this purpose, it is necessary to transform the Bool operation that is the

operand of the NOT operation. This will transform the operation into its equivalent that is not

preceded by operation NOT [14]. The specific transformations of the Boolean operations used

in the software tool can be seen in Table I, where 𝑎 and 𝑏 represent operands of the Boolean

operations.

It is also necessary to ensure that Boolean operations such as exclusive or (XOR),

equivalence (EQV), Sheffer stroke (NAND) and Peirce's arrow (NOR) will be replaced with

equivalent expressions containing only basic Bool operations, thus AND, OR and NOT [15].

All transformations can be seen in Table II, where 𝑎 and 𝑏 represent the operands of Boolean

operations.

(5)

(6)

Central European Researchers Journal, Vol.3 Issue 1

CERES ©2017 45

TABLE I TRANSFORMATION OF NOT OPERATION

Before transformation After transformation

NOT(NOT a) a

NOT(a OR b) a NOR b

NOT(a AND b) a NAND b

NOT(a NOR b) a OR b

NOT(a NAND b) a AND b

NOT(a EQV b) a XOR b

NOT(a XOR b) a EQV b

TABLE II TRANSFORMATION OF BOOLEAN OPERATIONS

Before transformation After transformation

a NAND b NOT a OR NOT b

a NOR b NOT a AND NOT b

a EQV b (a AND b) OR (NOT a AND NOT b)

a XOR b (a AND NOT b) OR (NOT a AND b)

 After performing all of the previous transformations, we get a logical expression that

characterizes a function and contains only basic Boolean algebra operations AND, OR and

NOT. Also, NOT operation is located just above variables and constants, becuase the

transformation are performed in top-down manner. An example of the transformation process

for logical expression (1 NAND 𝑥1) XOR (0 NOR 𝑥2) can bee seen on Fig. 1, where red

circles depict unwanted nodes for DNF or CNF.

Fig. 1 Illustration of the transformation process

Central European Researchers Journal, Vol.3 Issue 1

46 CERES ©2017

In order to ensure that the expression will be in DNF (i.e. disjunctions of elementary

conjunctions) or CNF (i.e. conjunctions of elementary disjunctions), it is necessary to perform

the transformation of the arrangement of AND and OR operations [14]. In total, there are

three cases needed to be addressed by the relevant transformation. It is also needed to point

out that all cases are for DNF, but if the AND operation is changed to OR operation and vice

versa, these cases are also usable for CNF.

The first case corresponds to situation 𝑐 AND (𝑎 OR 𝑏), or through the commutativity of the

operation AND also to the situation(𝑎 OR 𝑏) AND 𝑐. In this case, it is necessary to multiply

the operands 𝑎 and 𝑏 of the OR operation with another operand 𝑐 of the AND operation based

on the distribution law of the Boolean algebra. This means that the resulting expression

(𝑎 AND 𝑐) OR (𝑏 AND 𝑐) will be correct for DNF [14].

The second case corresponds to the occurrence of situation (𝑐 OR 𝑑) AND 𝑎 AND 𝑏,

possibly due to the commutativity of the AND operation also the occurrence of situation

Fig. 2 Case one and its transformation

Fig. 3 Case two and its transformation

Central European Researchers Journal, Vol.3 Issue 1

CERES ©2017 47

𝑎 AND 𝑏 AND(𝑐 OR 𝑑) . In this case, it is necessary to multiply the operands 𝑐 and 𝑑 of the

OR operation with operands 𝑎 and 𝑏 of the AND operation based on the distribution law. This

means that the obtained expression (𝑎 AND 𝑏 AND 𝑐) OR (𝑎 AND 𝑏 AND 𝑑) will already be

correct for DNF [14].

Finally, the third case corresponds to situation (𝑎 OR 𝑏) AND (𝑐 OR 𝑑). In this case, it is

necessary, on the basis of the distribution law, to multiply the individual operands of OR

operations between themselves. After multiplication, the created expression

(𝑎 AND 𝑐) OR (𝑎 AND 𝑑) OR (𝑏 AND 𝑐) OR (𝑏 AND 𝑑) will already be correct for DNF.

After performing all the transformations for the symbolic expression of the Boolean

function, the result expression is in DNF or CNF. This transformation process is very intuitive

and easy to implement, so it was chosen for a software tool.

IV. CONCLUSION

Boolean functions are very powerful tool, which can be used in many fields, such as game

theory, propositional theory, logic programming and reliability analysis. They can be

represented by many forms. One of them is symbolic expression, which can be easily read by

humans but not computers. The special symbolic expressions, called normal forms, consist

only of specific Boolean operations and are used in a number of fields. However, retrieving

these forms from a symbolic expression of Boolean function may be hard and time

consuming. Because of that, the software introduced in [9] was extended by other

functionalities that allow obtain normal forms, specifically DNF and CNF, from any symbolic

representation of Boolean function.

In order to receive Boolean normal forms, a transformation process is needed. In this paper,

we presented the transformation of symbolic expressions of a Boolean function by replacing

Boolean operation into a form that contains only basic Boolean algebra operations AND, OR,

and NOT, which is located just in front of variables or constants, and by transforming three

specific cases described above that are not valid for DNF or CNF. This transformation process

is intuitive and also effective for tree structure in which the symbolic expression is stored in

the software.

Fig. 4 Case three and its transformation

Central European Researchers Journal, Vol.3 Issue 1

48 CERES ©2017

REFERENCES

[1] M. Rausand and A. Høyland, System Reliability Theory, 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.,

2004.

[2] W. Kuo and X. Zhu, Importance Measures in Reliability, Risk, and Optimization: Principles and

Applications. Chichester, UK: Wiley, 2012.

[3] S. J. Upadhyaya and H. Pham, “Analysis of noncoherent systems and an architecture for the computation of

the system reliability,” IEEE Transactions on Computers, vol. 42, no. 4, pp. 484–493, Apr. 1993.

[4] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Binary decision diagrams in reliability analysis

of standard system structures,” in 2016 International Conference on Information and Digital Technologies

(IDT), 2016, pp. 164–172.

[5] M. Kvassay, E. Zaitseva, V. Levashenko, and J. Kostolny, “Reliability analysis of multiple-outputs logic

circuits based on structure function approach,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 36, no. 3, pp. 1–1, Mar. 2016.

[6] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S. Stankovic, Decision Diagram Techniques for

Micro- and Nanoelectronic Design Handbook, vol. 2. Boca Raton, FL: CRC Press, 2005.

[7] E. N. Zaitseva and V. G. Levashenko, “Importance analysis by logical differential calculus,” Automation

and Remote Control, vol. 74, no. 2, pp. 171–182, Feb. 2013.

[8] M. Kvassay, E. Zaitseva, J. Kostolny, and V. Levashenko, “Reliability analysis of noncoherent systems

based on logical differential calculus,” in Risk, Reliability and Safety: Innovating Theory and Practice,

Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC

Press, 2017, pp. 1367–1374.

[9] P. Rusnak “Parser of Input Data in Reliability Analysis based on Logical Differential Calculus” CERes

Journal, vol. 2, pp. 11-16, Dec. 2016.

[10] S. E. Whitesitt, Boolean Algebra and Its Applications, Courier Corporation, 2012.

[11] A. Horn, “On sentences which are true of direct unions of algebras,” Journal of Symbolic Logic, vol. I, no.

16, pp. 14–21, 1951.

[12] Y. Crama and P. L. Hammer, BOOLEAN FUNCTIONS - Theory, Algorithms, and Applications. Cambridge

University Press, 2011.

[13] U. Niessen-Gillhaus, W. Schneeweiss, “A practical comparison of several algorithms for reliability

calculations,“ Reliability Engineering & System Safety, vol. 31, pp. 309-319 1991.

[14] A. Ligeza, Logical Foundations for Rule-Based Systems. Springer, 2006.

[15] S.T. Karris, Digital Circuit Analysis and Design with Simulink Modeling and Introduction to CPLDs and

FPGAs. Orchard Publications, 2007.

Central European Researchers Journal, Vol.3 Issue 1

CERES ©2017 49

	Transformation of Boolean Expression into Disjunctive or Conjunctive Normal Form

