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Abstract—Reliability is an important characteristic of many systems. One of the current issues of reliability 

analysis is investigation of systems that are composed of many components. Structure of such systems can be 

defined in the form of a Boolean function. A Boolean function can be expressed in several ways. One of them is 

a symbolic expression. Several types of symbolic representations of Boolean functions exist. The most 

commonly known are disjunctive and conjunctive normal forms. These forms are often used not only in 

reliability analysis but also in other fields, such as game theory or logic design. Therefore, it is very important to 

have software that is able to transform any kind of Boolean expression into one of these normal forms. In this 

paper, an algorithm that allows such transformation is presented.    
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I. INTRODUCTION 

 

Investigation of system reliability is a complex problem consisting of many steps. One of 

them is creation of a model of the system. Since the system is usually composed of several 

components, a special map defining the dependency between operation of the components and 

operation of the system has to be known. This map is known as structure function and, for a 

system consisting of 𝑛 components, it has the following form [1]: 

 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝜙(𝒙):   {0,1}𝑛 → {0,1}, (1) 

where set {0,1} is a set of possible states at which the components and the system can operate 

(state 1 means that the component/system is functioning while state 0 agrees with a failure of 

the component/system), 𝑥𝑖 is a variable defining state of the 𝑖-th system component, for 𝑖 =
1,2, … , 𝑛, and 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of components states (state vector). 

Based on the properties of the structure function, two classes of systems can be recognized 

– coherent and noncoherent. A system is coherent if its structure function is monotonic, i.e. 

there are no circumstances under which a failure of any system component can result in a 

repair of the system. If this condition is not met, the system is noncoherent. 

Most of the systems studied by reliability engineers are coherent and, therefore, a lot of 

methods of reliability analysis are based on the assumption that the structure function is 

monotonic. Typical examples are methods of importance analysis [2], which focuses on 

ranking the components with respect to their influence on the system operation. However, real 

noncoherent systems also exist. Some of them are 𝑘-to-𝑙-out-of-𝑛 systems that are working if 

at least 𝑘 but not more than 𝑙 components are working [3, 4] or logic circuits [5]. Reliability 

analysis, especially importance analysis, of such systems requires development of new 

methods that will take the incoherencies into account. One of the possible ways is to use tools 

related to the analysis of Boolean function. One of such tools is logical differential calculus. 

Logical differential calculus allows investigating dynamic properties of Boolean functions 

[6]. Boolean derivative is the central term of this tool. Several types of Boolean derivatives 

exist but, for the purpose of reliability analysis, the most important one is Direct Partial 

Boolean Derivative (DPBD) [7]. For a Boolean function 𝜙(𝒙), it is defined as follows [6, 7]: 
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𝜕𝜙(𝑗 → 𝑗)̅ 𝜕𝑥𝑖(𝑠 → 𝑠̅)⁄ = {

1,   if 𝜙(𝑠𝑖 , 𝒙) = 𝑗 AND 𝜙(𝑠̅𝑖 , 𝒙) = 𝑗̅
0,   otherwise

,

for 𝑠, 𝑗 ∈ {0,1},
 (2) 

where (𝑠𝑖 , 𝒙) = (𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑠, 𝑥𝑖+1, … , 𝑥𝑛). In reliability analysis, this derivative can be 

used to find situations in which a failure/repair of a given system component results in the 

failure/repair of the system. Quantification of such situations can be performed to rank 

importance of the system components [7].    

Definition (2) implies four different DPBDs with respect to variable 𝑥𝑖 exist. For coherent 

systems, only DPBDs 𝜕𝜙(1 → 0) 𝜕𝑥𝑖(1 → 0)⁄  and 𝜕𝜙(0 → 1) 𝜕𝑥𝑖(0 → 1)⁄  are relevant 

since there exist no situation in which a failure (repair) of a component can result in system 

repair (failure). However, this is not true for noncoherent systems and, therefore, DPBDs 

𝜕𝜙(1 → 0) 𝜕𝑥𝑖(0 → 1)⁄  and 𝜕𝜙(0 → 1) 𝜕𝑥𝑖(1 → 0)⁄  have to be taken into account too [8]. 

DPBDs can be computed numerically (if the analyzed function is defined by the truth table) 

or symbolically (if the function is defined by a symbolic expression). Numerical calculation 

can be implemented using the computer easily. However, it can be applied only to functions 

of few variables since defining a big Boolean function using the truth table requires a huge 

amount of memory. This problem can be solved using the symbolic representation. This 

solution requires creation of complex software that is able to manipulate with different forms 

of symbolic expressions. Development of such tool has been considered in [9]. 

The software described in [9] will implement methods needed for reliability analysis. The 

methods should be based primarily on symbolic manipulation with Boolean (and also with 

multiple-valued logic) functions. The principal part of the software is a parser that is able to 

transform a symbolic expression into the form of a multi way tree that can be processed on the 

computer much more easily than the original string representing the symbolic expression. 

Normal forms [10] are one of the most commonly used Boolean expressions. In order to work 

with them, the software has to be able to transform various kinds of Boolean expressions into 

a specific normal form. In this paper, an algorithm for such transformation is presented. The 

algorithm assumes that a Boolean expression is represented in the form of a multi way tree. 

After applying the algorithm, we obtain a new tree that will agree with one of the normal 

forms that are used in Boolean algebra.  

II. BOOLEAN NORMAL FORMS 

Boolean function can be represented in many forms, and one of them is a symbolic form. A 

Boolean function can be expressed in a number of symbolic forms, some of which have a 

specially defined format and are called normal forms [10]. One of the normal forms is a 

disjunctive normal form or a sum of products. This form consists of elementary 

conjunctions. An elementary conjunction of 𝑛 Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 has the 

following form [11]: 
 

𝑃 = ⋀ 𝑥𝑖

𝑖∈𝔸

∧ ⋀ 𝑥̅𝑗

𝑗∈𝔹

, where 𝔸 ∪ 𝔹 ⊆ {1,2, … , 𝑛} and 𝔸 ∩ 𝔹 = ∅. 

 

Examples of elementary conjunctions are expressions such as 1, 𝑥̅1, 𝑥2, 𝑥1 ∧ 𝑥̅2, 𝑥̅1 ∧ 𝑥2 ∧ 𝑥3. 

 Logical expression 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) that has the following form [11]:  
 

𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = ⋁ 𝑃𝑘

𝑙

𝑘=1

= ⋁ (⋀ 𝑥𝑖

𝑖∈𝔸𝑘

∧ ⋀ 𝑥̅𝑗

𝑗∈𝔹𝑘

)

𝑙

𝑘=1

, 

(3) 

(4) 
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is then known as Disjunctive Normal Form (DNF) composed of 𝑙 elementary conjunctions 

denoted as 𝑃𝑘 for 𝑘 = 1,2, … , 𝑙. Examples of logical expressions in DNF are expressions such 

as 𝜙(𝑥1, 𝑥2, 𝑥3) =  𝑥1 ∨ 𝑥2 ∧ 𝑥̅3, 𝜙(𝑥1, 𝑥2) =  𝑥̅1 ∧ 𝑥2 ∨ 𝑥1 ∧ 𝑥̅2, 𝜙(𝑥1, 𝑥2, 𝑥3) =  𝑥1 ∧ 𝑥2 ∨
𝑥̅1 ∧ 𝑥̅2 ∨  𝑥1 ∧ 𝑥2 ∧ 𝑥̅3. 

 Another commonly used form is a conjunctive normal form also called product of sums. 

This form consists of elementary disjunctions (they are known as clauses). For 𝑛 Boolean 

variables 𝑥1, 𝑥2, … , 𝑥𝑛, an elementary disjunction is defined as follows [11]: 
 

𝑆 = ⋁ 𝑥𝑖

𝑖∈𝔸

∧ ⋁ 𝑥̅𝑗

𝑗∈𝔹

, where 𝔸 ∪ 𝔹 ⊆ {1,2, … , 𝑛} and 𝔸 ∩ 𝔹 = ∅. 

 

Examples of elementary disjunctions are expressions such as  0, 𝑥̅1, 𝑥2, 𝑥1 ∨ 𝑥̅2, 𝑥̅1 ∨ 𝑥2 ∨

𝑥̅3. 

Logical expression 𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) that has the following form [11]:  
 

𝜙(𝑥1, 𝑥2, … , 𝑥𝑛) = ⋀ 𝑆𝑘

𝑙

𝑘=1

= ⋀ (⋁ 𝑥𝑖

𝑖∈𝔸

∧ ⋁ 𝑥̅𝑗

𝑗∈𝔹

)

𝑙

𝑘=1

, 

 

is Conjunctive Normal Form (CNF), where 𝑆𝑘 is the 𝑘-th elementary disjunction for 𝑘 =
1,2, … , 𝑙. Examples of logical expressions in CNF are expressions such as 𝜙(𝑥1, 𝑥2, 𝑥3) =
 (𝑥1 ∨ 𝑥2) ∧  (𝑥1 ∨ 𝑥̅3), 𝜙(𝑥1, 𝑥2) =  (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥̅2), 𝜙(𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∨ 𝑥̅2 ∨ 𝑥3. 

 These normal forms find their usage in a number of fields, such as game theory, artificial 

intelligence, logic programming, logic design, and reliability analysis. For example, a special 

DNF, called the Horn clause (condition), is used in proposition logic and logic programming 

[11], DNF and CNF are used in the area of logic circuits to layout the logic gates from the 

logic function of circuit [12], or DNF is used in the reliability analysis, specifically in 

symbolic fault-tree analysis [13]. 

III. TRANSFORMATION TO NORMAL FORMS 

The previous text indicates that normal forms are important in a number of fields. 

Therefore, it is necessary for the software tool introduced in [9] to transform the expressions 

of Boolean functions into these basic forms. 

Before the transformation of the stored Boolean function into DNF or CNF is performed, it 

is firstly necessary to ensure that Bool's negation operation (NOT) is only in front of variables 

or constants. For this purpose, it is necessary to transform the Bool operation that is the 

operand of the NOT operation. This will transform the operation into its equivalent that is not 

preceded by operation NOT [14]. The specific transformations of the Boolean operations used 

in the software tool can be seen in Table I, where 𝑎 and 𝑏 represent operands of the Boolean 

operations. 

It is also necessary to ensure that Boolean operations such as exclusive or (XOR), 

equivalence (EQV), Sheffer stroke (NAND) and Peirce's arrow (NOR) will be replaced with 

equivalent expressions containing only basic Bool operations, thus AND, OR and NOT [15]. 

All transformations can be seen in Table II, where 𝑎 and 𝑏 represent the operands of Boolean 

operations. 

 

 

 

 

(5) 

(6) 
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TABLE I TRANSFORMATION OF NOT OPERATION 

Before transformation After transformation 

NOT(NOT a) a 

NOT(a OR b) a NOR b  

NOT(a AND b) a NAND b 

NOT(a NOR b) a OR b 

NOT(a NAND b) a AND b 

NOT(a EQV b) a XOR b 

NOT(a XOR b) a EQV b 
 

 
TABLE II TRANSFORMATION OF BOOLEAN OPERATIONS 

Before transformation After transformation 

a NAND b  NOT a OR NOT b 

a NOR b NOT a AND NOT b 

a EQV b (a AND b) OR (NOT a AND NOT b)  

a XOR b (a AND NOT b) OR (NOT a AND b) 
 

 After performing all of the previous transformations, we get a logical expression that 

characterizes a function and contains only basic Boolean algebra operations AND, OR and 

NOT. Also, NOT operation is located just above variables and constants, becuase the 

transformation are performed in top-down manner. An example of the transformation process 

for logical expression (1 NAND 𝑥1) XOR (0 NOR 𝑥2) can bee seen on Fig. 1, where red 

circles depict unwanted nodes for DNF or CNF.   

 

 
 

 

 

Fig. 1 Illustration of the transformation process 
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In order to ensure that the expression will be in DNF (i.e. disjunctions of elementary 

conjunctions) or CNF (i.e. conjunctions of elementary disjunctions), it is necessary to perform 

the transformation of the arrangement of AND and OR operations [14]. In total, there are 

three cases needed to be addressed by the relevant transformation. It is also needed to point 

out that all cases are for DNF, but if the AND operation is changed to OR operation and vice 

versa, these cases are also usable for CNF. 

 

 
 

 

The first case corresponds to situation 𝑐 AND (𝑎 OR 𝑏), or through the commutativity of the 

operation AND also to the situation(𝑎 OR 𝑏) AND 𝑐. In this case, it is necessary to multiply 

the operands 𝑎 and 𝑏 of the OR operation with another operand 𝑐 of the AND operation based 

on the distribution law of the Boolean algebra. This means that the resulting expression 

(𝑎 AND 𝑐) OR (𝑏 AND 𝑐) will be correct for DNF [14]. 

 

 
 

 

The second case corresponds to the occurrence of situation (𝑐 OR 𝑑) AND 𝑎 AND 𝑏, 

possibly due to the commutativity of the AND operation also the occurrence of situation 

Fig. 2 Case one and its transformation 

Fig. 3 Case two and its transformation 
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𝑎 AND 𝑏 AND(𝑐 OR 𝑑) . In this case, it is necessary to multiply the operands 𝑐 and 𝑑 of the 

OR operation with operands 𝑎 and 𝑏 of the AND operation based on the distribution law. This 

means that the obtained expression (𝑎 AND 𝑏 AND 𝑐) OR (𝑎 AND 𝑏 AND 𝑑) will already be 

correct for DNF [14]. 

Finally, the third case corresponds to situation (𝑎 OR 𝑏) AND (𝑐 OR 𝑑). In this case, it is 

necessary, on the basis of the distribution law, to multiply the individual operands of OR 

operations between themselves. After multiplication, the created expression 

(𝑎 AND 𝑐) OR (𝑎 AND 𝑑) OR (𝑏 AND 𝑐) OR (𝑏 AND 𝑑) will already be correct for DNF. 

After performing all the transformations for the symbolic expression of the Boolean 

function, the result expression is in DNF or CNF. This transformation process is very intuitive 

and easy to implement, so it was chosen for a software tool. 

 

 

IV. CONCLUSION 

Boolean functions are very powerful tool, which can be used in many fields, such as game 

theory, propositional theory, logic programming and reliability analysis. They can be 

represented by many forms. One of them is symbolic expression, which can be easily read by 

humans but not computers. The special symbolic expressions, called normal forms, consist 

only of specific Boolean operations and are used in a number of fields. However, retrieving 

these forms from a symbolic expression of Boolean function may be hard and time 

consuming. Because of that, the software introduced in [9] was extended by other 

functionalities that allow obtain normal forms, specifically DNF and CNF, from any symbolic 

representation of Boolean function.  

In order to receive Boolean normal forms, a transformation process is needed. In this paper, 

we presented the transformation of symbolic expressions of a Boolean function by replacing 

Boolean operation into a form that contains only basic Boolean algebra operations AND, OR, 

and NOT, which is located just in front of variables or constants, and by transforming three 

specific cases described above that are not valid for DNF or CNF. This transformation process 

is intuitive and also effective for tree structure in which the symbolic expression is stored in 

the software. 

Fig. 4 Case three and its transformation 
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