
 Models and Methods of Evaluation

of Information Sufficiency for Determining

the Software Complexity and Quality Based

on the Metric Analysis Results

Tetiana O. Hovorushchenko

Abstract— The aim of this study is the development of the models and methods for evaluating the

information sufficiency for determining the software complexity and quality based on the metric

analysis results. In this paper, the models and methods based on the comparative analysis of base

ontology of subject area and ontology of concrete software are developed. The developed models and

methods provide the sorting of all indicators, that absent in the software requirements specification

(SRS), in descending the weights values, i.e. to prioritize additions in SRS.

Keywords—Information sufficiency, metric analysis, ontologies, software complexity, software quality

I. INTRODUCTION

Analysis of [1-5] revealed the fact that the causes of many software incidents are rooted in the

SRS. The software quality is the degree of satisfaction of users or the degree of compliance to

customers’ needs [6-8]. Then, if the project objectives at the early lifecycle stages don't meet

the needs of users, the software will not have high quality. Therefore, the quality and success

of software project implementation significantly depend on the SRS and on the sufficiency of

information in it. The sufficiency of information is the rational information saturation that

eliminates information incompleteness (lack of necessary information).

Today the evaluation of indicators for the software quality and complexity metrics is

conducted only at the stage of the quality evaluation for the ready source code [5]. But the SRS

have all indicators, which are needed to the metrics calculation [5]. So the information

sufficiency (as presence in the SRS all necessary indicators for metrics calculation) for future

definition of the software complexity and quality can be evaluated on the basis of the SRS. And

if some indicators are absent, then the SRS has insufficient information for metrics calculation

and the developers have to make the necessary adjustments in the SRS.

The evaluation of sufficiency of the SRS information (presence in the SRS all necessary

indicators for metrics calculation) provides the choice of software project in terms of its

predicted quality and complexity at the early lifecycle stages, increases efficiency of project

management due the validity of decisions, reduces the time of decision-making, reduces the

costs for collection and processing of information at the later lifecycle stages (for example,

during the software quality audit stage). The insufficiency of SRS information reduces the

effectiveness and veracity of evaluating the software quality and complexity.

The actual task is the evaluating the sufficiency of the SRS information - for example, the

possibility of calculating the values of the metrics of the software complexity and quality based

on available indicators in SRS. So the aim of this study is the development of the models and

methods for evaluating the information sufficiency for determining the software complexity

and quality based on the metric analysis results.

T. O. Hovorushchenko, Khmelnytskyi National University, Khmenlytskyi, Ukraine ().

Central European Researchers Journal, Vol.2 Issue 2

42 CERES ©2016

II. FORMALIZED AND ONTOLOGICAL MODELS OF THE SOFTWARE COMPLEXITY AND

QUALITY BASED ON THE METRIC ANALYSIS

During the analysis of software metrics as sources of information on its characteristics, the

presence of cross-correlation of metrics was revealed because they have some joint indicators.

The models of the software quality and complexity based on the metric analysis are necessary

to develop for evaluating the correlation and the mutual influences of metrics and their

indicators. In [9] it was proved that the software quality at the design stage (QDS) depends on

14 metrics, and software complexity at the design stage(CXDS) depends on the 10 metrics with

exact or predicted values:),...,(141 sqmsqmQDS  ,),...,(101 scxmscxmCXDS  .

The set of software quality metrics at the design stage is:

},,,,,,,,,,,,,{ DpLcFpCccCptSqcSccSdtSctMbqMmtRupCppChpSQM  , where Chp –

cohesion metric, Cpp – coupling metric, Rup – metric of the global variables calling, Mmt –

time of models modification, Mbq – quantity of found bugs during the models inspection, Sct

– software design total time, Sdt – design stage time, Scc – software design expected cost,

Sqc – software quality audit expected cost, Cpt – software realization productivity, Ccc –

code realization expected cost, Fp – functional points, Lc – effort applied by Boehm's model,

Dp – expected development time by Boehm's model.

The set of software quality metrics at the design stage can be presented in the form of










},,,,,,,,{

},,,,,{
},{

DpLcFpCccCptSqcSccSdtSct

MbqMmtRupCppChp
SQMSQMSQM prvexv , where exvSQM –

subset of software quality metrics with the exact values at the design stage, prvSQM – subset

of software quality metrics with the predicted values at the design stage.

The set of software complexity metrics at the design stage is:

},,),(,,,,,,{ CmpNclGVHDiffLOCIMPNIsSCXM прогночZV , where Is – Chepin's

metric, ZVN – Jilb's metric (absolute), MP – McClure's metric, I – Kafur's metric, epLOC

– expected Lines Of Code, HDiff – Halstead's metric,)(GV – McCabe's metric, cl – Jilb's

metric (logical), epN – expected quantity of program statements, Cmp – expected estimate of

interfaces complexity.

The set of software complexity metrics at the design stage can be presented in the form of

 },,),(,,{},,,,{},{ CmpNclGVHDiffLOCIMPNIsSCXMSCXMSCXM epepZVprvexv  ,

where exvSCXM – subset of software complexity metrics with the exact values, prvSCXM –

subset of software complexity metrics with the predicted values at the design stage.

Then the models of software quality and complexity on the basis of metric analysis:

),,,,,,,,,,,,,(DpLcFpCccCptSqcSccSdtSctMbqMmtRupCppChpQDS  , (1)

),,),(,,,,,,(CmpNclGVHDiffLOCIMPNIsCXDS epepZV . (2)

Each of these metrics is a function of several indicators, moreover, quality and complexity

metrics depend on 72 indicators, but only on 42 different indicators, then set of indicators of

the software quality and complexity for further metric analysis has the form

},...,{ 421 sqcxisqcxiSQCXI  .

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 43

The set of indicators of the software quality for further metric analysis has the form

},...,{ 241 sqisqiSQI  (SQCXISQI), because the software quality metrics depend on 39

indicators, but only on 24 different indicators. The set of indicators of the software complexity

for further metric analysis has the form }21,...,{ 1 scxiscxiSCXI  (SQCXISCXI ),because

the software complexity metrics depend on 33 indicators, but only on 21 different indicators

(there are indicators that affect both quality metrics and complexity metrics, therefore they are

both in the set SQI and in the set SCXI).

The models of software quality metrics have the form:

),(1 IaomCamChp  , (3)

where Cam – cohesion of actions in module, Iaom – importance of actions order in module;

),,,,(2 gpfpPcdTmopdTmidCpp  , (4)

where Tmid – type of module input data, Tmopd – type of module output data, Pcd – presence

of common data, fp – quantity of preceding modules, gp – quantity of following modules;

Pup

Aup
PupAupRup ),(3 , (5)

where Aup – quantity of real access to global variables, Pup – quantity of potential access to

global variables;

),,(4 SdslcPdQclMmt  , (6)

where Qcl – quantity of code lines, Pd – project duration, Sdslc – share of design stage;

),(5 mQQbmMbq  , (7)

where Qbm – quantity of bugs of module, mQ – quantity of modules;

),(6 PdQclSct  ; (8)

),,(7 SdslcPdQclSdt  ; (9)

 ColQclColQclScc ),(8 , (10)

where Col – cost of one line;

),,,(9 ColQclSqavvtqSvvtqlcSqc  , (11)

where Svvtqlc – share of VVTQ stage, Sqavvtq – share of quality audit in VVTQ;

Central European Researchers Journal, Vol.2 Issue 2

44 CERES ©2016

),(10 PdQclCpt  ; (12)

),,(11 SrslcColQclCcc  , (13)

where Srslc – share of realization stage in lifecycle;

),,,,(12 ELFILFEINEOEIFp  , (14)

where EI – quantity of external inputs, EO – quantity of external outputs, EIN – quantity of

external requests, ILF – quantity of internal logic files; ELF – quantity of external logic files;

bQclaPtQclLc ),(13 , (15)

where Pt – project type, which determines the COCOMO coefficients a , b ;

dbQclacPtQclDp ),(14 , (16)

where Pt – project type, which determines the COCOMO coefficients a , b , c , d .

Thus, the model of software quality based on the metric analysis (at the design stage):









































dbb

m

QclacQclaELFILFEINEOEI

SrslcColQclPdQcl

ColQclSqavvtqSvvtqlcColQclSdslcPdQcl

PdQclQQbmSdslcPdQcl

Pup

Aup
gpfpPcdTmopdTmidIaomCam

QDS

,),,,,,(

),,,(),,(

),,,,(,),,,(

),,(),,(),,,(

,),,,,,(),,(

12

1110

97

654

21

. (17)

As seen from formulas (3)-(16), some functions for calculating the software quality metrics

are known (functions 141383 ,,, ), the remaining functions are uncertain.

The models of software complexity metrics have the form:

)5,032(),,,,(1 TCMPQQTCMPIs mm  , (18)

where P – quantity of variables for calculations and output, M – quantity of modified or

created variables, C – quantity of control variables, T – quantity of not used variables;

 lemmlemmZV QQQQN ),(2 , (19)

where lemQ – quantity of links of each module;

 




Qm

i
m PmYgpPmXfpPmYPmXgpfpQMP

1
3))()(())(),(,,,(, (20)

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 45

where)(PmX – quantity of calls to module Pm ,)(PmY – quantity of calls from modulePm ;

))1((),,,(4  WrRdWrRdRWrRdWrRdWRWQWrRdRWQI mm , (21)

where W – quantity of procedures to update data structure, R – quantity of procedures to read

from data structure, WrRd – quantity of procedures to read and update data structure;

 QclQclLOCep )(5 ; (22)

NUOprnd

NOprndNUOprtr
NOprndNOprtrNUOprndNUOprtrQclHDiff 

2
),,,,(6 , (23)

where NUOprtr – quantity of unique operators, NUOprnd – quantity of unique operands,

NOprtr – total quantity of operators, NOprnd – total quantity of operands (depend on Qcl);

 2),,()(7  NENOprtrNEGV , (24)

where E – quantity of control transfers, N – quantity of computing operators and expressions

(depend on total quantity of operators NOprtr);

NOprtr

LL
LLNOprtrcl LOOPIF
LOOPIF


),,(8 , (25)

where IFL – quantity of logic operators, LOOPL – quantity of cycle operators;

),(9 QclNOprtrNep  ; (26)

),,(10 mQNUOprndNOprndCmp  . (27)

As seen from formulas (18)-(27), some functions for calculating the software complexity

metrics are known (functions 81 ), the remaining functions are uncertain.

Thus, the model of software complexity based on the metric analysis (at the design stage):









































),,(),,(

,),2(),/()2/(

,)),1((

,))()((,),5,032(

109

1

m

LOOPIF

m

Qm

i
lemmm

QNUOprndNOprndQclNOprtr

NOprtr

LL
NENUOprndNOprndNUOprtr

QclWrRdWrRdRWrRdWrRdWRWQ

PmYgpPmXfpQQTCMPQ

CXDS . (28)

The models of the software quality and complexity based on the metric analysis show that

there are indicators, which affect more than one metric. Thus, there is the metrics correlation

Central European Researchers Journal, Vol.2 Issue 2

46 CERES ©2016

by some indicators. The existence of relationships between metrics affect their significance and

weight [10], therefore should identify joint indicators for the metrics and should determine the

significance (probability) of the indicators with the purpose of improving the veracity of the

evaluations of the software quality and complexity. The knowledge of experienced

professionals about the mutual influences and correlation of metrics are valuable in identifying

the joint indicators, so they should be stored and used. The ontologies were selected for this

knowledge reflection and accumulation.

The ontological model of software quality based on the metric analysis has the form:


metrmetrmetrmetr QQQQ FRXXO ,, , where

metrQX – finite set of metrics and indicators

of the software quality,
metrQRX – finite set of relationships between concepts,

metrQF – finite

set of interpretation functions for the software quality metrics and indicators.

Considering the model of software quality based on the metric analysis, the set of metrics and

indicators of the software quality is:

 },...,{},{
381 metrmetrmetr QQQ xxSQISQMX  , (29)

where SQMxx
metrmetr QQ },...,{
141

, i.e. },...,{},...,{ 141
141

sqmsqmxx
metrmetr QQ  ,

SQIxx
metrmetr QQ },...,{

3815
, then },...,{},...,{ 241

3815
sqisqixx

metrmetr QQ  .

The set of relationships between concepts
metrQRX consists from relationship «depends on»,

i.e. }"{" ondependsRX
metrQ  . The set

metrQF of interpretation functions for metrics and

indicators of the software quality consists from function for quality depending on the metrics

and functions for quality metrics depending on the indicators, i.e.

()}(),...,(),{},...{ 141
151


metrmetrmetr QQQ ffF .

Thus the base ontological model of the software quality based on the metric analysis:

 ()}(),...,(),,"",,...,,...,{ 141241141  ondependssqisqisqmsqmO
metrQ . (30)

The ontological model of the concrete software quality based on the metric analysis:

 ()}(),...,(),,"",,...,,...,{ 14111  ondependssqisqisqmsqmO nqinqmQ
realmetr

, (31)

where nqm (14nqm) – quantity of software quality metrics, which can be calculated on the

basis of the available indicators in the SRS of concrete software, nqi (24nqi) – quantity of

quality indicators, which are available in the SRS of concrete software.

The ontological model of software complexity based on the metric analysis has the form:


metrmetrmetrmetr CXCXCXCX FRXXO ,, , where

metrCXX – finite set of metrics and

indicators of the software complexity,
metrCXRX – set of relationships between concepts,

metrCXF – set of interpretation functions for the software complexity metrics and indicators.

Considering the model of software quality based on the metric analysis, the set of metrics and

indicators of the software complexity is:

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 47

 },...,{},{
311 metrmetrmetr CXCXCX xxSCXISCXMX  , (32)

where SCXMxx
metrmetr CXCX },...,{
101

, i.e. },...,{},...,{ 101
101

scxmscxmxx
metrmetr CXCX  ,

SCXIxx
metrmetr CXCX },...,{

3111
, then },...,{},...,{ 211

3111
scxiscxixx

metrmetr QCX  .

The set of relationships between concepts
metrCXRX consists from relationship «depends

on», i.e. }"{" ondependsRX
metrCX  . The set

metrCXF of interpretation functions for

metrics and indicators of the software complexity consists from function for complexity

depending on the metrics and functions for complexity metrics depending on the indicators, i.e.

()}(),...,(),{},...{ 101
111


metrmetrmetr CXCXCX ffF .

Thus the base ontological model of the software complexity based on the metric analysis:

 ()}(),...,(),,"",,...,,...,{ 101211101  ondependsscxiscxiscxmscxmO
metrCX . (33)

The ontological model of the concrete software quality based on the metric analysis:

 ()}(),...,(),,"",,...,,...,{ 10111  ondependsscxiscxiscxmscxmO ncxincxmCX
realmetr

, (34)

where ncxm (10ncxm) – quantity of software complexity metrics, which can be calculated

on the basis of the available indicators in the SRS of concrete software, ncxi (21ncxi) –

quantity of complexity indicators, which are available in the SRS of concrete software.

III. FORMALIZED AND ONTOLOGICAL MODELS OF SOFTWARE REQUIREMENTS

SPECIFICATION (IN TERMS OF THE AVAILABILITY OF INDICATORS FOR SOFTWARE

METRICS CALCULATION)

Considering the SRS structure according to ISO 29148 [11], the SRS can be represented in

the following formalized form (in terms of the availability in it of indicators for software quality

and complexity metrics calculation):

  metrmetrmetrmetrmetrmetr RRRRRSRS 5,4,3,2,1 , (35)

where metrR1 – set of complexity and quality indiactors of section 1 of SRS, metrR2 – set of

indiactors of section 2 of SRS, metrR3 – set of indiactors of section 3 of SRS, metrR4 – set

of indiactors of section 4 of SRS, metrR5 – set of indiactors of section 5 of SRS.

Some indicators may be contained in section 1 "Introduction" of the SRS, some indicators

may be contained in section 3 "Specific requirements", some indicators may be contained in

section 5 "Supporting information" of the SRS.

The ontological model of the SRS (in terms of the availability of indicators for software

complexity and quality metrics calculation) has the form:


metrmetr SRSSRSmetrSRS RXXO , , where

metrSRSX – finite set of the software

complexity and quality indicators in the SRS,
metrSRSRX – finite set of relationships between

concepts.

Central European Researchers Journal, Vol.2 Issue 2

48 CERES ©2016

Thus the model of the SRS (in terms of the availability of indicators for software complexity

and quality metrics calculation) has the form:























LOOPIF

lem

m
metr

LL

NNOprndNOprtrNUOprndNUOprtrColQbmPdQcl

WrRdRWPmYPmXQTCMPELFILF

EINEOEIQAupgpfpPcdTmopdTmidIaomCam

PtSrslcSqavvtqSvvtqlcSdslcPup

SRS
i

,

,,,,,,,,,

,

,
,,),(),(,,,,,,,

,,,,,,,,,,,,

,

},,,,,,{

. (36)

Considering the model of the SRS, the set of the indicators:

 },...,{},{
471 metrmetrmetr SRSSRSmetrSRS xxSQCXISRSX  , (37)

where }5,...1{},...,{
51

metrmetrSRSSRS RRxx
metrmetr

 , },...,{
476 metrmetr SRSSRS xx

},...,{ 421 sqcxisqcxi . The set of relationships between concepts
metrSRSRX consists from

relationship «contained in», i.e. }"{" incontainedRX
metrSRS  .

Thus the base ontological model of the SRS (in terms of the availability of indicators for

software complexity and quality metrics calculation) has the form:

 }"",,...,5,...,1{ 421 incontainedsqcxisqcxiRRO metrmetrSRSmetr
 . (38)

The ontological model of the SRS of concrete software (in terms of the availability of

indicators for software complexity and quality metrics calculation) has the form:

  "",,...,5,...,1 1 incontainedsqcxisqcxiRRO nimetrmetrSRS
realmetr

 , (39)

where ni (42ni) – quantity of complexity and quality indicators, which are available in the

SRS of concrete software.

IV. ONTOLOGICAL METHODS OF EVALUATION OF INFORMATION SUFFICIENCY FOR

DETERMINING THE SOFTWARE COMPLEXITY AND QUALITY BASED ON THE METRIC

ANALYSIS RESULTS

Foremost, the ontological method of evaluation of information sufficiency for determining

the software complexity and quality based on the metric analysis results was developed [12].

The base ontology for the subject domain "Software Engineering" (part "The software quality

and complexity. Metric Analysis") was developed in [12]. For this ontology 4 software

characteristics were selected: software project complexity, software complexity, software

project quality, software quality. These characteristics are calculated on the basis of metrics,

which in turn are based on indicators, according to the above models. The concept of the base

ontology for the subject domain "Software Engineering" is shown on Figure 1.

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 49

Fig. 1 Concept of the base ontology for the subject domain "Software Engineering" (part "The

software quality and complexity. Metric Analysis")

In evaluating the software complexity and quality should focus on those indicators that are

part of multiple metrics simultaneously. By analogy with the method of evaluation of weights

of software quality measures [13] let's evaluate the weights of SRS indicators, which are

necessary for metrics calculation.

For evaluation of the weight of g -th indicator let’s use the next formula:

ind

metr

m
k

k
gind

g
 , (40)

where
gindmetrk – quantity of metrics, which depend on g -th indicator; indk – total quantity

of indicators (analysis of the above models showed that nowadays metrics of complexity and

quality depend on 72 indicators, but on 42 different indicators, i. e. today 42indk).

The developed models of the software complexity and quality, the base ontology for the

subject domain "Software Engineering" (part "The software quality and complexity. Metric

Analysis") provide the conclusions about the indicators, which are used for calculation of more

than one metric, and about the quantities of metrics, which depend on each indicator (numerator

of weights) [12]. In evaluating the quality and complexity metrics it's important to satisfy the

availability in the SRS of those indicators, which have larger weights, with the purpose of

providing the appropriate level of evaluations veracity.

The weighted ontology of the subject domain "Software Engineering" (part "The software

quality and complexity. Metric Analysis") will be called the ontology, in which the complexity

and quality indicators have the weights with the purpose of recommendations about the further

satisfaction of these indicators in the SRS.

The method of evaluation of information sufficiency for determining the software complexity

and quality based on the metric analysis results using the weighted ontology consists from next

stages:

1) development of the weighted base ontology for the subject domain "Software

Engineering" (part "The software quality and complexity. Metric Analysis");

2) analysis of the sections of SRS of concrete software for the availability of the indicators,

which are necessary for metrics calculation, i.e. for the availability of the elements of set

},...,{},{
471 metrmetrmetr SRSSRSmetrSRS xxSQCXISRSX  ; generation and filling the

template of ontology for concrete software, i.e. generation and filling the template of ontology

 "",,...,5,...,1 1 incontainedsqcxisqcxiRRO nimetrmetrSRS
realmetr

 ;

3) comparing the developed weighed ontology for concrete software with the weighted

ontology of the subject domain "Software Engineering" (part "The software quality and

complexity. Metric Analysis"), i.e. comparing the set of indicators },...,{ 1 nisqcxisqcxi from

ontological model of the SRS of concrete software

 "",,...,5,...,1 1 incontainedsqcxisqcxiRRO nimetrmetrSRS
realmetr

 with the appropriate sets

Central European Researchers Journal, Vol.2 Issue 2

50 CERES ©2016

},...,{ 241 sqisqi , },...,{ 211 scxiscxi of the base ontological models of the software quality and

complexity based on the metric analysis

()}(),...,(),,"",,...,,...,{ 141241141  ondependssqisqisqmsqmO
metrQ and

()}(),...,(),,"",,...,,...,{ 101211101  ondependsscxiscxiscxmscxmO
metrCX ;

4) identifying the indicators, which are absent in the weighed ontology for concrete

software, i.e. forming set },...,{\},...,{},...,{ 1421)42(1 nini sqcxiswcxisqcxisqcxisqcxisqcxi  ,

where)(},...,{ 421 metrmetr CXQ OOsqcxisqcxi  ,
realmetrSRSni Osqcxisqcxi },...,{ 1 (if

these sets are not empty, then SRS information is not sufficient for calculating the metrics of

software complexity and quality; the more elements are in these sets, the smaller sufficiency of

SRS information is); sorting of the missing indicators in descending the values of weights;

herewith the numerator of the weight of each missing indicator indicates the number of software

metrics that cannot be calculated without this indicator;

5) identifying the metrics, which cannot be calculated on the basis of available indicators;

6) identifying the software characteristics, which cannot be calculated on the basis of the

metrics, which can be calculated on the basis of available indicators;

7) making the decision on the need to supplement of the SRS by the indicators, if there are

metrics and characteristics whose values can not be determined based on available indicators;

herewith the indicators with larger weights (the first in the sorted list of missing indicators)

should be added in the SRS first of all;

8) repeating the stages 2-7 until it will be possible to identify all the metrics and software

characteristics, or until forming the conclusion about insufficient data for determining the

software complexity and quality with high veracity degree.

On the basis of the base ontology of the subject domain "Software Engineering" (part "The

software quality and complexity. Metric Analysis"), which is represented in [12], let's develop

the weighted base ontology for the subject domain "Software Engineering" (part "The software

quality and complexity. Metric Analysis"). In this weighted ontology, there is information about

the weights of the SRS indicators, which are necessary for the metrics calculation. The parts of

this weighted base ontology are: the weighted base ontology for the software project complexity

(Figure 2), the weighted base ontology for the software complexity, the weighted base ontology

for the software project quality, the weighted base ontology for the software quality (all these

ontologies are similar to ontology on Figure 2 and are developed according to above models).

Fig. 2 The weighted base ontology for the software project complexity

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 51

Marking the weights of complexity and quality indicators in the weighted base ontology

provides the sorting all the missing in the SRS indicators in descending values of weights, i.e.

prioritizes their additions in the SRS.

V. EXPERIMENTS

The SRS of the automated system for large-format photo print was analyzed, on the basis of

this SRS the ontology for the concrete software was developed.

On Figure 3 the ontology for the complexity of concrete software project (the part of the

ontology for the concrete software project) is presented. The metrics that cannot be calculated

on the basis of the available in the SRS indicators are circled in Figure 3.

Fig. 3 The ontology for the complexity of concrete software project

Comparative analysis of the developed ontology for the automated system for large-format

photo print with the base ontology of the subject domain "Software Engineering" (part "The

software quality and complexity. Metric Analysis") provides the conclusion that 9 (from 42)

indicators are absent in the developed ontology for the concrete software project, i.e. the SRS

information is insufficient for software metrics calculation (20 metrics from 24 cannot be

calculated). For example, the compare Fig. 2 and Fig. 3 provides the conclusion that: the SRS

information is insufficient for calculating the Chepin's metric, McClure's metric, Kafur's metric,

and in the SRS information for calculating the Jilb's metric (absolute) is at all absent.

The sorted list of the missing indicators in descending the values of weights is: 1) quantity of

code lines – 12/42; 2) quantity of modules – 6/42; 3) project duration – 4/42; 4) total quantity

of operators – 4/42; 5) cost of one line – 3/42; 6) project type – 2/42; 7) share of design stage

in lifecycle – 2/42; 8) quantity of control variables – 1/42; 9) quantity of links of each module

– 1/42. This sorted list indicates the priority of indicators and the consistency of their review

and addition in the SRS.

VI. CONCLUSION

The metric analysis is an effective mean of evaluating the software complexity and quality

on condition of the availability of sufficient information for this. One of the factors, which

affect to the veracity of such information, is the sufficiency of the information in the SRS

regarding the indicators for metrics calculation. So the development of models and methods of

evaluation of information sufficiency for determining the software complexity and quality, in

general, enhances the veracity of evaluates of the software complexity and quality.

The developed model of the software quality and complexity based on the metric analysis,

formalized and ontological model of the SRS (in terms of the availability of indicators for

Central European Researchers Journal, Vol.2 Issue 2

52 CERES ©2016

software complexity and quality metrics calculation) became the basis for the development of

the ontological methodology of complex evaluation of the software quality and complexity.

The analysis of the software metrics as sources of information on its characteristics, revealed

the cross-correlation of these metrics because they have some joint indicators. The ontologies

were selected for the reflection and accumulation of the knowledge of experienced

professionals about the mutual influences and correlation of metrics.The ontologies became the

basis of the ontological method of evaluation of information sufficiency for determining the

software complexity and quality based on the metric analysis results. The correlation of metrics

on indicators, that is displayed in the base ontology, taken into account in evaluating the weights

of indicators. The lack of indicators, for which there is the correlation, can impair the accuracy

and veracity of evaluations of the software complexity and quality. The correlation of metrics

on some indicators increases the importance of these indicators in evaluating the software

complexity and quality, thus increases the weights of indicators.

The developed method of evaluation of information sufficiency for determining the software

complexity and quality based on the metric analysis results using the weighted ontology

provides the conclusion about the insufficiency of the SRS information for metrics calculation,

the sorting missing in the SRS indicators, prioritization their addition to the SRS.

REFERENCES

[1] C. Jones, O.Bonsignour, The Economics of Software Quality. Boston: Pearson Education, 2012, 588 p.

[2] T. Ishimatsu, N.G. Levenson, J. P. Thomas, C. H. Fleming, M. Katahira, Yu. Miyamoto, R. Ujiie, H. Nakao,

N. Hoshino, “Hazard Analysis of Complex Spacecraft Using Systems-Theoretic Process Analysis,” Journal

of Spacecraft and Rockets, vol. 51, no. 2, pp. 509-522, 2014.

[3] E. Yourdon, Death March: The Complete Software Developer’s Guide to Surviving “Mission Impossible”

Projects. Prentice Hall, 2003, 256 p.

[4] C. Shamieh, Systems Engineering for Dummies. Wiley Publishing, 2011, 74 p.

[5] D. Maevskiy, Y. Kozina, “Where and When Is Formed of Software Quality?,” Electrical and Computer

Systems, no. 18, pp. 55-59, 2016. (in Russian)

[6] ISO/IEC 25010:2011. Systems and software engineering. Systems and software Quality Requirements and

Evaluation (SQuaRE). System and software quality models. ISO/IEC, 2011, 34 p.

[7] ISO/IEC 25030:2007. Software engineering. Software product Quality Requirements and Evaluation

(SQuaRE). Quality requirements. ISO/IEC, 2007, 36 p.

[8] ISO/IEC TR 19759:2015. Software Engineering. Guide to the software engineering body of knowledge

(SWEBOK). ISO/IEC, 2015, 336 p.

[9] O. Pomorova, T. Hovorushchenko, “The Intelligent Decision Support System for Choice of Software Project,”

Journal of Information, Control and Management Systems, vol. 10, no.1, pp.87-96, 2012.

[10] S. Sugiyanto, S. Rochiman, “Integration of DEMATEL and ANP methods for calculate the weight of

characteristics software quality based model ISO 9126,” in International Conference on Information

Technology and Electrical Engineering, Yogyakarta (Indonesia), 2013, pp.143-148.

[11] ISO/IEC/IEEE 29148-2011. Systems and software engineering. Life cycle processes. Requirements

engineering. ISO/IEC/IEEE, 2011, 28 p.

[12] T. Hovorushchenko, O. Pomorova, “Method of Assessment of Information Sufficiency for Determination of

Software Complexity and Quality Based on The Comparative Analysis of Ontologies,” Radioelectronic and

Computer Systems, no.6, pp. 59-68, 2016. (in Ukrainian)

[13] T. Hovorushchenko, O. Pomorova, “Evaluation of Mutual Influences of Software Quality Characteristics

Based ISO 25010:2011,” in XI International Scientific Conference on Computer Sciences and Information

Technologies, Lviv (Ukraine), 2016, pp.80-83.

Central European Researchers Journal, Vol.2 Issue 2

CERES ©2016 53

	Models and Methods of Evaluation of Information Sufficiency for Determining the Software Complexity and Quality Based on the Metric Analysis Results

